Acute Renal Failure

Acute Kidney Injury (AKI)

Dr. András Tislér

Ist Department of Medicine
Semmelweis University
Acute Kidney Injury
Overview

• Definition and epidemiology

• Classification

• Clinical course and workup

• Management
Acute Kidney Injury (formerly acute renal failure): definition

- Loss of kidney function (GFR) within hours/days
- Frequently accompanied by decreased urinary output (oliguria or rarely anuria)

Note: the definition is based on creatinine and/or urine output criteria
Section 2: AKI Definition

2.1.1: AKI is defined as any of the following (Not Graded):

- Increase in SCr by $\geq 0.3\text{ mg/dl} \ (\geq 26.5\text{ }\mu\text{mol/l})$ within 48 hours; or
- Increase in SCr to ≥ 1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or
- Urine volume $< 0.5\text{ ml/kg/h}$ for 6 hours.

2.1.2: AKI is staged for severity according to the following criteria (Table 2). (Not Graded)

Table 2 | Staging of AKI

<table>
<thead>
<tr>
<th>Stage</th>
<th>Serum creatinine</th>
<th>Urine output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5–1.9 times baseline OR $\geq 0.3\text{ mg/dl} \ (\geq 26.5\text{ }\mu\text{mol/l})$ increase</td>
<td>$< 0.5\text{ ml/kg/h}$ for 6–12 hours</td>
</tr>
<tr>
<td>2</td>
<td>2.0–2.9 times baseline</td>
<td>$< 0.5\text{ ml/kg/h}$ for ≥ 12 hours</td>
</tr>
<tr>
<td>3</td>
<td>3.0 times baseline OR Increase in serum creatinine to $\geq 4.0\text{ mg/dl} \ (\geq 353.6\text{ }\mu\text{mol/l})$ OR Initiation of renal replacement therapy OR In patients < 18 years, decrease in eGFR to $< 35\text{ ml/min per 1.73 m}^2$</td>
<td>$< 0.3\text{ ml/kg/h}$ for ≥ 24 hours OR Anuria for ≥ 12 hours</td>
</tr>
</tbody>
</table>
Changes in GFR and serum creatinine after injury to the kidney

![Graph showing changes in GFR and serum creatinine over 28 days. GFR (mL/min) and serum creatinine (mg/dL) are plotted against days. GFR decreases sharply at day 0 and rises gradually over time. Serum creatinine increases to a peak at day 14 and then decreases.](image-url)
Epidemiology

• General population
 – no renal replacement therapy: 5/1000/y
 – Renal replacement therapy: 250 PMP

• Hospital admissions
 – 2-3% of all admissions have AKI
 – In hospital development: 5-7%
 – In ICU development: 30%

• Mortality: 20-50%
 – Depending on cause and comorbidity

• Increased risk for later chronic kidney disease
Prognosis

Mortality, %

- All cases
- ICUs
- Medical
- Surgical
- Nephrol

*P<0.001 respect to all cases
Acute Kidney Injury
Overview

• Definition and epidemiology
• Classification
• Clinical course and workup
• Management
Classification of acute kidney injury

Prerenal

Postrenal

Intrinsic renal

Glomerular disease
- glomerulonephritis

Tubular injury
- Ischemic
- Sepsis
- Toxic

Interstitial nephritis

Vascular disease
- Vasculitis
- HUS/TTP
- Obstruction (emboli, thrombosis)
Causes of AKI in hospitals setting

- Acute tubular necrosis
- Acute interstitial nephritis
- Obstruction
- Acute-on-chronic renal failure
- Prerenal
- RPGN
- Vascular
Prerenal (functional) acute kidney injury

- Functional GFR decrease due to hemodynamic changes leading to decreased intraglomerular pressure (no true renal parenchymal disease)
 - Hypovolaemia, hypotension, preglomerular vasoconstriction etc.

- Renal failure may resolve after eliminating the hemodynamic trigger

- If sustained may lead to intrinsic renal failure (acute tubular necrosis)

- Increased risk in patients with baseline chronic kidney disease
Prerenal AKI: causes

- **Extracellular fluid loss**
 - bleeding, decreased fluid intake, diarrhea, vomiting, excessive diuresis

- **Decreased effective circulating volume + edema**
 - Heart failure, nephrosis syndrome, cirrhosis

- **Decreased effective circulating volume + vasodilation**
 - sepsis, anaphylaxis

- **Glomerular autoregulatory failure**
 - **Afferent artery vasoconstriction:**
 - NSAI, hepatorenal syndrome, cyclosporin A, adrenalin, hyperkalcemia, sepsis
 - **Efferent artery vasodilation:**
 - ACEI, ARB
Autoregulation of the glomerular circulation

- Afferent arteriole
- Increased vasodilatory prostaglandins
- Increased angiotensin II
- Normal GFR maintained
Prerenal AKI: clinical features

- Decreased spot urine Na-concentration (<20 mmol/l)
 - Unless the patient is on a diuretic
- Fracional excretion of sodium (FE_{Na}) < 1%
- Concentrated urine (osmolarity usually above 500mosm/l)
- Specific gravity usually >1.020
- Increase in BUN usually > increase in creatinine
- Negative urinary sediment (sometimes hyline casts)
Intrinsic renal acute kidney injury
Intrinsic AKI: causes

- Acute tubular necrosis ~ 70-80%
 - Ischemic
 - septic
 - Toxic (exogenous vs endogenous substances)

- Acute tubulointerstitial nephritis ~ 5-6%
 - Drugs - allergic, sarcoidosis, SLE
 - Infectious (acute pyelonephritis, CMV EBV)

- Glomerular damage ~ 4-5%
 - Acute glomerulonephritis
 - Vasculitis (ANCA pozitíve)

- Vascular damage ~ 2-3%
 - Renal artery occlusion, renal vein thrombosis
 - Cholesterol embolisation
 - Thrombotic microangiopathy (e.g. hemolytic uremic syndrome, preeclampsia etc.)
Some endogenous toxins that may cause acute tubular necrosis

- Sepsis
- Pigment: haemolysis, rhabdomyolysis
- uric acid,
- „tumor lysis syndrome” (uric acid, phosphate)
- Oxalate
- Calcium
- light chains
Some exogenous toxins that may cause acute tubular necrosis

- Iodinated contrast media
- Intoxication: ethylene glycol
- Heavy metals: arzenic, cadmium, mercury, lead
- Antimicrobials: acyclovir, aminoglicosides, amphotericin B, indinavir, pentamidin, vancomycin,
- Chemotherapeutics: cisplatin, carboplatin, ifosfamid,
- Amphetamin
- Herbs
- Animal toxins (wasp, spider, snake bites)
The outer medulla is susceptible to hypoxia due to low oxygen delivery and high oxygen consumption.
GFR decrease in ATN

- Inflammation
- Tubular obstruction
- Tubuloglomerular feed-back
- Backleak
Akut tubularis necrosis: damage
Akut tubular necrosis: restitution
Clinical features of acute tubular necrosis

• Urinary Na concentration usually above 20 mmol/l
• $FE_{Na} > 2-3\%$
• Urinary osmolarity \cong serum
• Urine specific gravity ~ 1.010
• Sediment: muddy brown granular
 ATN casts
Biomarkers in intrinsic AKI
The troponins of the kidney?

Potential urinary biomarkers for early diagnosis of AKI
- NAG
- β2M
- α1M
- RBP
- Cystatin C
- KIM-1
- Clusterin
- Microalbuminuria

NGAL
CYR-61
IL-18
OPN
FABP
NHE3
Fetuin A

Delayed biomarkers for kidney injury
- ↑ Serum creatinine
- ↑ Blood urea nitrogen

Normal epithelium
Ischemia/reperfusion
Toxicity
Damage
Necrosis
Apoptosis
Cell death
↓ GFR

Comprehensive Clinical Nephrology, 2010
Contrast induced nephropathy

Risk factors

• Chr. Kidney disease
• Diabetic nephropathy
• Heart failure
• Volume depletion
• Proteinuria

• High osmolarity contrast agent
• Large volume of contrast agent

Prevention

• Pre and postprocedural hydration:
 - isotonic NaCl or Nabicarb, urine flow 150-200ml/h)

• Use of non-ionic, iso-osmolar contrast agent
• Low volume of contrast agent

• Acetil cystein: 600mg t.i.d pre/post
Tumor lysis syndrome

AKI after chemotherapy of large tumor burden (e.g. hematologic) and cell lysis

Rarely after:
- steroid threatment of lymphoproliferative diseases
- radiotherapy
- interferon

Features:
- hyperuricemia
- hyperphosphatemia
- hypocalcemia
- hyperkalemia

Risk factor:
- volume depletion,
 chr. kidney disease

Prevention:
- hydration (Saline),
- allopurinol 600-900mg
- febuxostate 120mg
- uricase (UA→allantoin)

Akute kidney injury
- ATN+ tubular crystal obstruction+ inflammation

Uric acid crystals
• AKI due to cholesterol embolisation into small renal arterioles and glomerular capillaries

• AKI following intraarterial procedures

• Increased risk in patients with widespread atherosclerosis

• Immediate but also after after a few days
Atheroembolic acute kidney injury (cholesterol embolisation)

- **Multisystemic disease**
 - kidney: AKI
 - skin: livedo reticularis
 - toes: small emboly „blue toe”
 - intestines: ischemia

- Eozinofiluria
- Low complement
Postrenal acute kidney injury
Postrenal acute kidney injury

- **Extraureteral obstruction**
 - tumor
 - retroperitoneal fibrosis
 - ligation

- **Intraureteral obstruction**
 - Lithiasis, tumor
 - Blood clot

- **Bladder obstruction**
 - prostate hypertrophy, tumor
 - Bladder tumor
 - Pelvic tumor
 - Funkcional/neurologic

- **Urethral obstruction**
 - strikture, phymosis
Acute Kidney Injury
Overview

• Definition and epidemiology

• Classification

• **Clinical course and workup**

• Management
Acute kidney injury - clinical course (characteristic for ATN)

- **Introductory phase**
 - s/s of the underlying disease

- **Olig-anuric, uremic phase (1-2 weeks)**
 - Volume and electrolyte pH disturbances ($K^+\uparrow$, $P\uparrow$, $Ca\uparrow\downarrow$, $Na\uparrow\downarrow$, $pH\downarrow$)
 - Uremia, encephalopathy
 - Complications
 - Haematologic (anaemia, throbocytopenia)
 - Frequent infections
 - Gastrointestinal (vomiting, diarrhea, gastric ulcers)
 - Cardiovascular (heart failure, arrhythmias, pericarditis)
 - Malnutrition

- **Polyuric phase (during restitution) 2-6 weeks**
 - May lead to 4-6 l/day urine output with electrolyte disturbances
Acute kidney injury – Workup (cause? complications?)

• **Medical history**
 - Previous kidney disease
 - Systemic disease (autoimmune, infection, diabetes etc)
 - Medication review (ACEI, NSAI, nephrotoxins, new drugs, OTC etc.)
 - Volume loss
 - Interventions
 - Urological/gynecological disease
 - Change in urine

• **Physical examination**
 - Volume status (BP, HR, jugular vein, skin, lung, edema)
 - Signs of systemic illnesses (rashes, arthritis, lymph nodes, hepatosplenomegaly etc)
 - Bladder percussion
Acute kidney injury – Workup (cause? complications?)

• **Laboratory**
 - BUN, creatinine
 - Blood count, electrolytes (Na, K, P, Ca, pH, bicarbonate, uric acid)
 - Immunology (dsDNA, ANCA complement etc.)
 - Urine output, protein, blood, Na, Fe\textsubscript{Na}, osmolarity/specific gravity
 - **Urinary sediment**
 - RBC dysmorphic (glomerular)
 - Hyalyne cast – prerenal
 - ATN cast – intrinsic renal
 - WBC cast - interstitial nephritis
 - RBC cast glomerulonephritis
 - Crystals (oxalat ethylene glycol poisoning)

• **Radiology** (ultrasound, chest Xray)

• **Renal biopsy**
 - If s/s suggestive of intrinsic renal, but not ATN
 - If ATN is not resolving within 2 weeks
Acute Kidney Injury
Overview

• Definition and epidemiology
• Classification
• Clinical course and workup
• Management
Prerenal postrenal acute kidney injury

• Volume depletion
 – Volume resuscitation (use crystalloids avoid starch)
 – Cessation of ACEI/ARB, NSAI, diuretic

• Effective volume depletion with edema (heart failure, nephrosis)
 – Na and volume restriction
 – Cessation of ACEI/ARB, NSAI
 – Step-up diuretic (furosemid+HCT)
 – Ultrafiltration
 – Optimize cardiac function

• Postrenal
 – Ensure urine flow (bladder catheter or transrenal drain)
Intrinsic renal acute kidney injury (ATN)

• Prevention
 – Avoid nephrotoxic drugs
 – Avoid hypoxia, prerenal disease, sepsis
 – Treat underlying disease (if known)

• Supportive care
 – Hypervolemia: furosemide rarely helps, dialysis
 – Acidosis: pH<7.2, HCO₃<17 Na-bicarbonate
 – Hyperkalemia: Ca-gluconate, glucose+insulin, NaHCO₃, resin, dialysis
 – Hyperphosphatemia: Ca-carbonat/acetat p.o.
 – Malnutrition: energy: 30-40 kcal/kg/day, protein restriction promotes catabolism
 – Infection control
 – Anemia treatment
 – Gastrointestinal profilaxis: PPI
Indications for renal replacement therapy

• Resistant hypervolemia
• Resistant hyperkalemia
• Resistant acidosis
• Uremic encephalopathy pericarditis
• Some intoxications (ethylene glicol, methanol, lithium)
• No set creatinine/BUN value but usually above 3-400/25-30

Methods
• Continuous v.s. intermittent (ICU)
• Hemodialysis, hemofiltration, hemodiafiltration
Acute Kidney Injury: summary

- Frequent disease with poor prognosis
- Most frequent types are the prerenal and acute tubular necrosis, but less frequent causes should not be forgotten
- Special attention to drug history, volume and urinary findings during workup
- Prevention and supportive care are key to ATN management